Adaptive Fuzzy Kernel Clustering Algorithm
نویسنده
چکیده
Fuzzy clustering algorithm can not obtain good clustering effect when the sample characteristic is not obvious and need to determine the number of clusters firstly. For thi0s reason, this paper proposes an adaptive fuzzy kernel clustering algorithm. The algorithm firstly use the adaptive function of clustering number to calculate the optimal clustering number, then the samples of input space is mapped to highdimensional feature space using gaussian kernel and clustering in the feature space. The Matlab simulation results confirmed that the algorithm's performance has greatly improvement than classical clustering algorithm and has faster convergence speed and more accurate clustering results.
منابع مشابه
ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملRobust Adaptive Threshold Algorithm based on Kernel Fuzzy Clustering on Image segmentation
Using thresholding method to segment an image, a fixed threshold is not suitable if the background is rough here, we propose a new adaptive thresholding method using KFCM. The method requires only one parameter to be selected and the adaptive threshold surface can be found automatically from the original image. An adaptive thresholding scheme using adaptive tracking and morphological filtering....
متن کاملA Multiple Kernel Fuzzy C-means Clustering Algorithm for Brain Mr Image Segmentation
In spite of its computational efficiency and wide spread popularity, the FCM algorithm does not take the spatial information of pixels into consideration. In this paper, a multiple kernel fuzzy c-means clustering (MKFCM) algorithm is presented for fuzzy segmentation of magnetic resonance (MR) images. By introducing a novel adaptive method to compute the weights of local spatial values in the ob...
متن کاملKernel Clustering with a Differential Harmony Search Algorithm for Scheme Classification
This paper presents a kernel fuzzy clustering with a novel differential harmony search algorithm to coordinate with the diversion scheduling scheme classification. First, we employed a self-adaptive solution generation strategy and differential evolution-based population update strategy to improve the classical harmony search. Second, we applied the differential harmony search algorithm to the ...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کامل