Adaptive Fuzzy Kernel Clustering Algorithm

نویسنده

  • Weijun Xu
چکیده

Fuzzy clustering algorithm can not obtain good clustering effect when the sample characteristic is not obvious and need to determine the number of clusters firstly. For thi0s reason, this paper proposes an adaptive fuzzy kernel clustering algorithm. The algorithm firstly use the adaptive function of clustering number to calculate the optimal clustering number, then the samples of input space is mapped to highdimensional feature space using gaussian kernel and clustering in the feature space. The Matlab simulation results confirmed that the algorithm's performance has greatly improvement than classical clustering algorithm and has faster convergence speed and more accurate clustering results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

Robust Adaptive Threshold Algorithm based on Kernel Fuzzy Clustering on Image segmentation

Using thresholding method to segment an image, a fixed threshold is not suitable if the background is rough here, we propose a new adaptive thresholding method using KFCM. The method requires only one parameter to be selected and the adaptive threshold surface can be found automatically from the original image. An adaptive thresholding scheme using adaptive tracking and morphological filtering....

متن کامل

A Multiple Kernel Fuzzy C-means Clustering Algorithm for Brain Mr Image Segmentation

In spite of its computational efficiency and wide spread popularity, the FCM algorithm does not take the spatial information of pixels into consideration. In this paper, a multiple kernel fuzzy c-means clustering (MKFCM) algorithm is presented for fuzzy segmentation of magnetic resonance (MR) images. By introducing a novel adaptive method to compute the weights of local spatial values in the ob...

متن کامل

Kernel Clustering with a Differential Harmony Search Algorithm for Scheme Classification

This paper presents a kernel fuzzy clustering with a novel differential harmony search algorithm to coordinate with the diversion scheduling scheme classification. First, we employed a self-adaptive solution generation strategy and differential evolution-based population update strategy to improve the classical harmony search. Second, we applied the differential harmony search algorithm to the ...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015